Custom boxes
Showbox
#import "@preview/showybox:2.0.1": showybox
#showybox(
[Hello world!]
)
#import "@preview/showybox:2.0.1": showybox
// First showybox
#showybox(
frame: (
border-color: red.darken(50%),
title-color: red.lighten(60%),
body-color: red.lighten(80%)
),
title-style: (
color: black,
weight: "regular",
align: center
),
shadow: (
offset: 3pt,
),
title: "Red-ish showybox with separated sections!",
lorem(20),
lorem(12)
)
// Second showybox
#showybox(
frame: (
dash: "dashed",
border-color: red.darken(40%)
),
body-style: (
align: center
),
sep: (
dash: "dashed"
),
shadow: (
offset: (x: 2pt, y: 3pt),
color: yellow.lighten(70%)
),
[This is an important message!],
[Be careful outside. There are dangerous bananas!]
)
#import "@preview/showybox:2.0.1": showybox
#showybox(
title: "Stokes' theorem",
frame: (
border-color: blue,
title-color: blue.lighten(30%),
body-color: blue.lighten(95%),
footer-color: blue.lighten(80%)
),
footer: "Information extracted from a well-known public encyclopedia"
)[
Let $Sigma$ be a smooth oriented surface in $RR^3$ with boundary $diff Sigma equiv Gamma$. If a vector field $bold(F)(x,y,z)=(F_x (x,y,z), F_y (x,y,z), F_z (x,y,z))$ is defined and has continuous first order partial derivatives in a region containing $Sigma$, then
$ integral.double_Sigma (bold(nabla) times bold(F)) dot bold(Sigma) = integral.cont_(diff Sigma) bold(F) dot dif bold(Gamma) $
]
#import "@preview/showybox:2.0.1": showybox
#showybox(
title-style: (
weight: 900,
color: red.darken(40%),
sep-thickness: 0pt,
align: center
),
frame: (
title-color: red.lighten(80%),
border-color: red.darken(40%),
thickness: (left: 1pt),
radius: 0pt
),
title: "Carnot cycle's efficiency"
)[
Inside a Carnot cycle, the efficiency $eta$ is defined to be:
$ eta = W/Q_H = frac(Q_H + Q_C, Q_H) = 1 - T_C/T_H $
]
#import "@preview/showybox:2.0.1": showybox
#showybox(
footer-style: (
sep-thickness: 0pt,
align: right,
color: black
),
title: "Divergence theorem",
footer: [
In the case of $n=3$, $V$ represents a volume in three-dimensional space, and $diff V = S$ its surface
]
)[
Suppose $V$ is a subset of $RR^n$ which is compact and has a piecewise smooth boundary $S$ (also indicated with $diff V = S$). If $bold(F)$ is a continuously differentiable vector field defined on a neighborhood of $V$, then:
$ integral.triple_V (bold(nabla) dot bold(F)) dif V = integral.surf_S (bold(F) dot bold(hat(n))) dif S $
]
#import "@preview/showybox:2.0.1": showybox
#showybox(
frame: (
border-color: red.darken(30%),
title-color: red.darken(30%),
radius: 0pt,
thickness: 2pt,
body-inset: 2em,
dash: "densely-dash-dotted"
),
title: "Gauss's Law"
)[
The net electric flux through any hypothetical closed surface is equal to $1/epsilon_0$ times the net electric charge enclosed within that closed surface. The closed surface is also referred to as Gaussian surface. In its integral form:
$ Phi_E = integral.surf_S bold(E) dot dif bold(A) = Q/epsilon_0 $
]
Colorful boxes
#import "@preview/colorful-boxes:1.2.0": colorbox, slantedColorbox, outlinebox, stickybox
#colorbox(
title: lorem(5),
color: "blue",
radius: 2pt,
width: auto
)[
#lorem(50)
]
#slantedColorbox(
title: lorem(5),
color: "red",
radius: 0pt,
width: auto
)[
#lorem(50)
]
#outlinebox(
title: lorem(5),
color: none,
width: auto,
radius: 2pt,
centering: false
)[
#lorem(50)
]
#outlinebox(
title: lorem(5),
color: "green",
width: auto,
radius: 2pt,
centering: true
)[
#lorem(50)
]
#stickybox(
rotation: 3deg,
width: 7cm
)[
#lorem(20)
]
Theorems
See math